Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 178
1.
Folia Neuropathol ; 62(1): 102-107, 2024.
Article En | MEDLINE | ID: mdl-38741437

MALT lymphoma of the dura is a very rare type of low-grade B-cell lymphoma. Little more than 100 cases have been reported in the literature to date. We report a 43-year-old woman who was referred to hospital because of a series of three tonic-clonic seizures on the day of admission. Neurological examination revealed confusion and aphasia. Magnetic resonance imaging (MRI) showed a contrast-enhanced, broad-based lesion along the dura in the left parieto-occipital area. The suspicion of an en plaque meningioma was raised. The tumour invaded the brain parenchyma with visible extension into the brain sulci. There was a marked brain oedema surrounding the lesion and causing the midline shift 8 mm to the right. After stabilization of neurological condition (intravenous diuretics and steroids), the operation was performed. The diagnosis of dural MALT lymphoma was established. During the pathological examination, it was especially problematic to distinguish MALT lymphoma from follicular lymphoma, but the final diagnosis was MALT lymphoma. Surgical partial removal with additional R-CVP immunochemotherapy (rituximab, cyclophosphamide, vincristine and prednisone) resulted in complete remission. The follow-up period is 1 year. Our presented case of a MALT lymphoma highlights the fact that surgical partial removal with additional immunochemotherapy is an available option in these rare intracranial tumours.


Dura Mater , Lymphoma, B-Cell, Marginal Zone , Meningeal Neoplasms , Meningioma , Humans , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, B-Cell, Marginal Zone/diagnosis , Female , Adult , Meningioma/pathology , Meningioma/diagnosis , Dura Mater/pathology , Meningeal Neoplasms/pathology , Meningeal Neoplasms/diagnosis , Diagnosis, Differential
2.
Folia Neuropathol ; 62(1): 96-101, 2024.
Article En | MEDLINE | ID: mdl-38741436

Gliosarcoma (GS) is a rare variant of IDH-wildtype glioblastoma. It is classified as grade 4 in the latest WHO CNS classification of both glial and mesenchymal components. Gliosarcoma may arise de novo or secondary from glioblastoma. It occurs in up to 2% of patients diagnosed with glioblastoma. We present a case report of a 51-year-old patient who was initially diagnosed with glioblastoma multiforme, which transformed into secondary gliosarcoma with an osteosarcoma component 16 months after the initial diagnosis. We believe that increasing reporting of secondary gliosarcoma (sGS) will be helpful in understanding, diagnosing and providing more effective treatment for this cancer.


Brain Neoplasms , Glioblastoma , Gliosarcoma , Isocitrate Dehydrogenase , Osteosarcoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Gliosarcoma/genetics , Gliosarcoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Middle Aged , Isocitrate Dehydrogenase/genetics , Male
3.
J Pathol Inform ; 15: 100372, 2024 Dec.
Article En | MEDLINE | ID: mdl-38524918

Background: Chronic liver disease diagnoses depend on liver biopsy histopathological assessment. However, due to the limitations associated with biopsy, there is growing interest in the use of quantitative digital pathology to support pathologists. We evaluated the performance of computational algorithms in the assessment of hepatic inflammation in an autoimmune hepatitis in which inflammation is a major component. Methods: Whole-slide digital image analysis was used to quantitatively characterize the area of tissue covered by inflammation [Inflammation Density (ID)] and number of inflammatory foci per unit area [Focal Density (FD)] on tissue obtained from 50 patients with autoimmune hepatitis undergoing routine liver biopsy. Correlations between digital pathology outputs and traditional categorical histology scores, biochemical, and imaging markers were assessed. The ability of ID and FD to stratify between low-moderate (both portal and lobular inflammation ≤1) and moderate-severe disease activity was estimated using the area under the receiver operating characteristic curve (AUC). Results: ID and FD scores increased significantly and linearly with both portal and lobular inflammation grading. Both ID and FD correlated moderately-to-strongly and significantly with histology (portal and lobular inflammation; 0.36≤R≤0.69) and biochemical markers (ALT, AST, GGT, IgG, and gamma globulins; 0.43≤R≤0.57). ID (AUC: 0.85) and FD (AUC: 0.79) had good performance for stratifying between low-moderate and moderate-severe inflammation. Conclusion: Quantitative assessment of liver biopsy using quantitative digital pathology metrics correlates well with traditional pathology scores and key biochemical markers. Whole-slide quantification of disease can support stratification and identification of patients with more advanced inflammatory disease activity.

4.
Cell Death Dis ; 15(3): 228, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509074

Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Due to its fast proliferation, diffusive growth and therapy resistance survival times are less than two years for patients with IDH-wildtype GBM. GBM is noted for the considerable cellular heterogeneity, high stemness indices and abundance of the glioma stem-like cells known to support tumor progression, therapeutic resistance and recurrence. Doublesex- and mab-3-related transcription factor a2 (DMRTA2) is involved in maintaining neural progenitor cells (NPC) in the cell cycle and its overexpression suppresses NPC differentiation. Despite the reports showing that primary GBM originates from transformed neural stem/progenitors cells, the role of DMRTA2 in gliomagenesis has not been elucidated so far. Here we show the upregulation of DMRTA2 expression in malignant gliomas. Immunohistochemical staining showed the protein concentrated in small cells with high proliferative potential and cells localized around blood vessels, where it colocalizes with pericyte-specific markers. Knock-down of DMRTA2 in human glioma cells impairs proliferation but not viability of the cells, and affects the formation of the tumor spheres, as evidenced by strong decrease in the number and size of spheres in in vitro cultures. Moreover, the knockdown of DMRTA2 in glioma spheres affects the stabilization of the glioma stem-like cell-dependent tube formation in an in vitro angiogenesis assay. We conclude that DMRTA2 is a new player in gliomagenesis and tumor neovascularization and due to its high expression in malignant gliomas could be a biomarker and potential target for new therapeutic strategies in glioblastoma.


Brain Neoplasms , Glioblastoma , Glioma , Neural Stem Cells , Adult , Humans , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Glioblastoma/metabolism , Glioma/pathology , Neoplastic Stem Cells/metabolism , Neural Stem Cells/metabolism , Transcription Factors/metabolism
5.
Cell Rep ; 43(2): 113707, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38306270

Diffuse intrinsic pontine gliomas (DIPGs) are deadly pediatric brain tumors, non-resectable due to brainstem localization and diffusive growth. Over 80% of DIPGs harbor a mutation in histone 3 (H3.3 or H3.1) resulting in a lysine-to-methionine substitution (H3K27M). Patients with DIPG have a dismal prognosis with no effective therapy. We show that histone deacetylase (HDAC) inhibitors lead to a significant reduction in the H3.3K27M protein (up to 80%) in multiple glioma cell lines. We discover that the SB939-mediated H3.3K27M loss is partially blocked by a lysosomal inhibitor, chloroquine. The H3.3K27M loss is facilitated by co-occurrence of H2A.Z, as evidenced by the knockdown of H2A.Z isoforms. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis confirms the occupancy of H3.3K27M and H2A.Z at the same SB939-inducible genes. We discover a mechanism showing that HDAC inhibition in DIPG leads to pharmacological modulation of the oncogenic H3.3K27M protein levels. These findings show the possibility of directly targeting the H3.3K27M oncohistone.


Brain Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Humans , Child , Histones , Mutant Proteins , Glioma/genetics , Brain Neoplasms/genetics , Histone Deacetylase Inhibitors/pharmacology
6.
FASEB J ; 38(3): e23466, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38318780

Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.


Fatty Liver , Metabolic Diseases , Humans , Animals , Mice , Mice, Inbred C57BL , Antioxidants , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , Models, Animal
7.
Pediatr Endocrinol Diabetes Metab ; 29(3): 202-208, 2023.
Article En | MEDLINE | ID: mdl-38031835

BACKGROUND: Adrenocortical carcinoma (ACC) accounts for 0.2% of childhood malignancies. The most common symptom in children is rapidly progressive androgenization. Herein, we report a case of a patient with symptoms of hypercortisolaemia and androgenization, who was diagnosed with ACC. CASE PRESENTATION: In a 10-year-old patient with ACC the course of the disease was complicated by 3 recurrences. She was treated with surgery, chemo-, and radiotherapy. Currently, 8 years after the end of treatment, there have been no signs of recurrence. CONCLUSIONS: A patient after ACC treatment requires regular check-ups and long-term observation. Constant supervision enables early diagnosis of disease recurrence, and the use of treatment improves the prognosis.


Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Child , Female , Humans , Adrenocortical Carcinoma/diagnosis , Adrenocortical Carcinoma/surgery , Adrenal Cortex Neoplasms/diagnosis , Adrenal Cortex Neoplasms/surgery , Virilism
8.
Children (Basel) ; 10(11)2023 Nov 07.
Article En | MEDLINE | ID: mdl-38002884

Adrenocortical carcinoma (ACC) is a rare cancer in childhood. ACC is frequently associated with germline TP53 variants, with founder effects especially due to the p.Arg337His mutation. ACC leads to the secretion of adrenocortical hormones, resulting in endocrine syndromes, which is the usual trigger for establishing the diagnosis. We present a surprising ACC pathology in a non-secreting, ectopic retroperitoneal tumour in a 4-year-old boy, successfully controlled with chemotherapy and mitotane after microscopically incomplete tumour resection with spillage. Genomic analysis (gene panel sequencing and copy-number microarray) demonstrated a novel p.Phe338Leu tetramerisation domain (TD) TP53 variant in the proband and his cancer-free mother and a monoallelic deletion encompassing the TP53 locus in cancer tissue, consistent with cancer-predisposition syndrome. While the recurrent p.Arg337His variant translates into high ACC risk, residue 338 and, in general, TD domain variants drive heterogeneous clinical scenarios, despite generally being considered less disruptive than TP53 DNA-binding domain mutations.

9.
Neuropathol Appl Neurobiol ; 49(5): e12940, 2023 Oct.
Article En | MEDLINE | ID: mdl-37771048

AIMS: Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far. The aim of this study was to assess the changes in GA architecture in epilepsy. METHODS: Golgi visualisation with immunohistochemical staining in the neocortex of adult patients who underwent epilepsy surgery; 3D reconstruction and quantitative morphometric analysis of GA structure in the rat hippocampi upon kainic acid (KA) induced seizures, as well as in vitro studies with the use of Ca2+ chelator BAPTA-AM in primary hippocampal neurons upon activation were performed. RESULTS: We observed GA dispersion in neurons of the human neocortex of patients with epilepsy and hippocampal neurons in rats upon KA-induced seizures. The structural changes of GA were reversible, as GA morphology returned to normal within 24 h of KA treatment. KA-induced Golgi fragmentation observed in primary hippocampal neurons cultured in vitro was largely abolished by the addition of BAPTA-AM. CONCLUSIONS: In our study, we have shown for the first time that the neuronal GA is fragmented in the human brain of patients with epilepsy and rat brain upon seizures. We have shown that seizure-induced GA dispersion can be reversible, suggesting that enhanced neuronal activity induces Golgi reorganisation that is involved in aberrant neuronal plasticity processes that underlie epilepsy. Moreover, our results revealed that elevated cytosolic Ca2+ is indispensable for these KA-induced morphological alterations of GA in vitro.


Epilepsy , Neurons , Adult , Humans , Rats , Animals , Neurons/pathology , Seizures/pathology , Golgi Apparatus/pathology , Hippocampus/pathology , Epilepsy/pathology , Kainic Acid/pharmacology
10.
Children (Basel) ; 10(8)2023 Aug 15.
Article En | MEDLINE | ID: mdl-37628386

Craniospinal irradiation (CSI) has been a major component of the standard of care treatment backbone for childhood medulloblastoma. However, chemotherapy regimens have varied based on protocol, patient age, and molecular subtyping. In one of the largest studies to date, we analyzed treatment outcomes in children with newly-diagnosed medulloblastoma treated with pre-irradiation chemotherapy followed by risk-adapted radiotherapy and maintenance chemotherapy. A total of 153 patients from the Polish Pediatric Neuro-Oncology Group were included in the analysis. The median age at diagnosis was 8.0 years, and median follow-up time was 6.4 years. Sixty-seven patients were classified as standard-risk and eighty-six as high-risk. Overall survival (OS) and event-free survival (EFS) for standard-risk patients at 5 years (±standard error) were 87 ± 4.3% and 84 ± 4.6%, respectively, while 5-year OS and EFS for high-risk patients were 81 ± 4.3% and 79 ± 4.5%, respectively. Only one patient had disease progression prior to radiotherapy. This study demonstrates promising survival outcomes in patients treated with pre-irradiation chemotherapy followed by risk-adapted CSI and adjuvant chemotherapy. Such an approach may be useful in cases where the initiation of radiotherapy may need to be delayed, a common occurrence in many institutions globally.

11.
Folia Neuropathol ; 61(2): 121-128, 2023.
Article En | MEDLINE | ID: mdl-37587886

BCOR is expressed in a new brain tumour entity, i.e. 'CNS tumour with BCOR internal tandem duplication' (HGNET BCOR) but not in several other high grade paediatric brain tumours investigated. Immunohistochemical detection of BCOR expression may therefore serve as a potential diagnostic marker. Nevertheless, in rare paediatric glioma cases recurrent EP300-BCOR fusions were detected, which resulted in strong BCOR immunopositivity. We have therefore examined other, not analysed so far, types of central nervous system (CNS) tumours, pineoblastoma and germinoma, to assess a potential involvement of BCOR in these tumours. Levels of BCOR RNA expression were investigated by NanoString nCounter system analysis in a series of altogether 66 high grade paediatric tumours, including four pineoblastoma cases. Immunohistological detection of BCOR was performed in eight pineoblastoma, five germinoma and four atypical teratoid rhabdoid tumours (ATRTs), all located in the pineal region. We detected BCOR expression in all pineoblastomas, at the RNA and protein levels, but not in germinomas and ATRTs. Further analysis of pineoblastoma samples did not reveal the presence of either BCOR internal tandem duplication or BCOR fusion involvement. Positive immunohistological BCOR nuclear reaction in pineoblastoma may therefore differentiate this type of tumour from other high grade tumours located in the pineal region.


Brain Neoplasms , Germinoma , Pineal Gland , Pinealoma , Rhabdoid Tumor , Humans , Child , Pinealoma/diagnosis , Pinealoma/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , RNA , Proto-Oncogene Proteins , Repressor Proteins/genetics
12.
Pol J Pathol ; 74(1): 1-11, 2023.
Article En | MEDLINE | ID: mdl-37306347

Neuropathological central nervous system (CNS) post-mortem examination is a highly specialistic element of the autopsy procedure with methodological specificity. Herein we propose updated recommendations for CNS autopsy for pathologists and neuropathologists. The protocol includes the compendium of neuroanatomy with current nomenclature, consecutive steps of gross examination, as well as appropriate sampling algorithms in different clinical and pathological settings. The significance of pathoclinical cooperation in differential diagnosis is exposed. We believe it is essential to create and promote the guidelines to improve the quality of CNS post-mortem examination at the national level.


Brain , Neuropathology , Humans , Autopsy , Poland , Spinal Cord
13.
Int J Cancer ; 153(5): 1003-1015, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37338006

High-grade gliomas are aggressive, deadly primary brain tumors. Median survival of patients with glioblastoma (GBM, WHO grade 4) is 14 months and <10% of patients survive 2 years. Despite improved surgical strategies and forceful radiotherapy and chemotherapy, the prognosis of GBM patients is poor and did not improve over decades. We performed targeted next-generation sequencing with a custom panel of 664 cancer- and epigenetics-related genes, and searched for somatic and germline variants in 180 gliomas of different WHO grades. Herein, we focus on 135 GBM IDH-wild type samples. In parallel, mRNA sequencing was accomplished to detect transcriptomic abnormalities. We present the genomic alterations in high-grade gliomas and the associated transcriptomic patterns. Computational analyses and biochemical assays showed the influence of TOP2A variants on enzyme activities. In 4/135 IDH-wild type GBMs we found a novel, recurrent mutation in the TOP2A gene encoding topoisomerase 2A (allele frequency [AF] = 0.03, 4/135 samples). Biochemical assays with recombinant, wild type (WT) and variant proteins demonstrated stronger DNA binding and relaxation activity of the variant protein. GBM patients carrying the altered TOP2A had shorter overall survival (median OS 150 vs 500 days, P = .0018). In the GBMs with the TOP2A variant we found transcriptomic alterations consistent with splicing dysregulation. luA novel, recurrent TOP2A mutation, which was found exclusively in four GBMs, results in the TOP2A E948Q variant with altered DNA binding and relaxation activities. The deleterious TOP2A mutation resulting in transcription deregulation in GBMs may contribute to disease pathology.


Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Brain Neoplasms/metabolism , Glioma/genetics , Prognosis , DNA , Isocitrate Dehydrogenase/genetics , Mutation
15.
Molecules ; 28(5)2023 Mar 05.
Article En | MEDLINE | ID: mdl-36903631

INTRODUCTION: Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in childhood. FTIR spectroscopy provides a holistic view of the chemical composition of biological samples, including the detection of molecules such as nucleic acids, proteins, and lipids. This study evaluated the applicability of FTIR spectroscopy as a potential diagnostic tool for MB. MATERIALS AND METHODS: FTIR spectra of MB samples from 40 children (boys/girls: 31/9; age: median 7.8 years, range 1.5-21.5 years) treated in the Oncology Department of the Children's Memorial Health Institute in Warsaw between 2010 and 2019 were analyzed. The control group consisted of normal brain tissue taken from four children diagnosed with causes other than cancer. Formalin-fixed and paraffin-embedded tissues were sectioned and used for FTIR spectroscopic analysis. The sections were examined in the mid-infrared range (800-3500 cm-1) by ATR-FTIR. Spectra were analysed using a combination of principal component analysis, hierarchical cluster analysis, and absorbance dynamics. RESULTS: FTIR spectra in MB were significantly different from those of normal brain tissue. The most significant differences related to the range of nucleic acids and proteins in the region 800-1800 cm-1. Some major differences were also revealed in the quantification of protein conformations (α-helices, ß-sheets, and others) in the amide I band, as well as in the absorbance dynamics in the 1714-1716 cm-1 range (nucleic acids). It was not, however, possible to clearly distinguish between the various histological subtypes of MB using FTIR spectroscopy. CONCLUSIONS: MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy. As a result, it may be used as a further tool to hasten and enhance histological diagnosis.


Cerebellar Neoplasms , Medulloblastoma , Nucleic Acids , Male , Child , Female , Humans , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Spectroscopy, Fourier Transform Infrared/methods , Proteins
16.
Cancers (Basel) ; 15(5)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36900355

Glioblastomas (GBM) are the most common, primary brain tumors in adults. Despite advances in neurosurgery and radio- and chemotherapy, the median survival of GBM patients is 15 months. Recent large-scale genomic, transcriptomic and epigenetic analyses have shown the cellular and molecular heterogeneity of GBMs, which hampers the outcomes of standard therapies. We have established 13 GBM-derived cell cultures from fresh tumor specimens and characterized them molecularly using RNA-seq, immunoblotting and immunocytochemistry. Evaluation of proneural (OLIG2, IDH1R132H, TP53 and PDGFRα), classical (EGFR) and mesenchymal markers (CHI3L1/YKL40, CD44 and phospho-STAT3), and the expression of pluripotency (SOX2, OLIG2, NESTIN) and differentiation (GFAP, MAP2, ß-Tubulin III) markers revealed the striking intertumor heterogeneity of primary GBM cell cultures. Upregulated expression of VIMENTIN, N-CADHERIN and CD44 at the mRNA/protein levels suggested increased epithelial-to-mesenchymal transition (EMT) in most studied cell cultures. The effects of temozolomide (TMZ) or doxorubicin (DOX) were tested in three GBM-derived cell cultures with different methylation status of the MGMT promoter. Amongst TMZ- or DOX-treated cultures, the strongest accumulation of the apoptotic markers caspase 7 and PARP were found in WG4 cells with methylated MGMT, suggesting that its methylation status predicts vulnerability to both drugs. As many GBM-derived cells showed high EGFR levels, we tested the effects of AG1478, an EGFR inhibitor, on downstream signaling pathways. AG1478 caused decreased levels of phospho-STAT3, and thus inhibition of active STAT3 augmented antitumor effects of DOX and TMZ in cells with methylated and intermediate status of MGMT. Altogether, our findings show that GBM-derived cell cultures mimic the considerable tumor heterogeneity, and that identifying patient-specific signaling vulnerabilities can assist in overcoming therapy resistance, by providing personalized combinatorial treatment recommendations.

17.
Cell Rep ; 42(1): 111971, 2023 01 31.
Article En | MEDLINE | ID: mdl-36640350

Malignant gliomas are aggressive, hard-to-treat brain tumors. Their tumor microenvironment is massively infiltrated by myeloid cells, mostly brain-resident microglia, bone marrow (BM)-derived monocytes/macrophages, and dendritic cells that support tumor progression. Single-cell omics studies significantly dissected immune cell heterogeneity, but dynamics and specific functions of individual subpopulations were poorly recognized. We use Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) to precisely dissect myeloid cell identities and functionalities in murine GL261 gliomas. We demonstrate that the diversity of myeloid cells infiltrating gliomas is dictated by cell type and cell state. Glioma-activated microglia are the major source of cytokines attracting other immune cells, whereas BM-derived cells show the monocyte-to-macrophage transition in the glioma microenvironment. This transition is coupled with a phenotypic switch from the IFN-related to antigen-presentation and tumor-supportive gene expression. Moreover, we found sex-dependent differences in transcriptional programs and composition of myeloid cells in murine and human glioblastomas.


Brain Neoplasms , Glioma , Humans , Mice , Animals , Sex Characteristics , Glioma/pathology , Macrophages/metabolism , Brain Neoplasms/metabolism , Monocytes/metabolism , Microglia/metabolism , Tumor Microenvironment
19.
Article En | MEDLINE | ID: mdl-36047503

Insulinoma belongs to pancreatic neuroendocrine tumors and is immensely rare in children. The tumor leads to severe consequences of hypoglycemia caused by excessive insulin release. We report a pediatric patient with malignant insulinoma linked with liver transplantation due to metastases to this organ. A 13-year-old girl presented with symptoms of hypoglycemia due to hyperinsulinism. In computed tomography (CT), a polycyclic lesion in the head of the pancreas and enlarged lymph nodes were revealed. Modified Whipple's operation was performed, and histological examination confirmed pancreatic neuroendocrine tumor. CT of the body showed an enlarged liver with numerous metastases. Allogeneic liver transplantation was carried out successfully. Positron emission tomography-computed tomography (PET/CT) using 68Ga-DOTA-labeled somatostatin analogs at the age of 22 confirmed the complete metabolic remission. The patient currently remains under immunosuppressive and antiproliferative treatment. Multiple surgical interventions, liver transplantation combined with somatostatin analogs, and immunosuppressive medication could be effective in malignant insulinoma.

20.
Nature ; 609(7929): 1021-1028, 2022 09.
Article En | MEDLINE | ID: mdl-36131014

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Cell Differentiation , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Cell Differentiation/genetics , Cell Lineage , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Cerebellum/pathology , Core Binding Factor alpha Subunits/genetics , Hedgehog Proteins/metabolism , Histone Demethylases , Humans , Ki-67 Antigen/metabolism , Medulloblastoma/classification , Medulloblastoma/genetics , Medulloblastoma/pathology , Metencephalon/embryology , Metencephalon/pathology , Muscle Proteins , Mutation , Otx Transcription Factors/deficiency , Otx Transcription Factors/genetics , Repressor Proteins , T-Box Domain Proteins/metabolism , Transcription Factors
...